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1 PROOFS OF EIGENSPACE APPROXIMATION

This section contains proofs for Theorems 2 and 3 and
Corollary 1 established in Section 4 of the main paper. The
basics of matrix perturbation theory [1] required for the ease
of understanding these proofs is provided in the appendix.

Let there be M shifted normalized graph Laplacians
Lm ∈ Rn×n for m = 1, . . . ,M , each of which is a
symmetric and positive semi-definite. Let Lm have eigen-
values λm1 ≥ . . . ≥ λmn and corresponding eigenvectors

Um = [um1 , . . . , u
m
n ]. Let joint Laplacian L =

M∑
m=1

αmLm,

such that αm ≥ 0 and
M∑
m=1

αm = 1. Let the eigen decom-

position of L be given by L = ZΓZT with eigenvalues
γ1 ≥ . . . ≥ γn. For a fixed integer r, we assume γr 6= γr+1.

Let approximate joint Laplacian Lr∗ =
M∑
m=1

αmL
r
m be the

convex combination of best rank r approximation Lrm of
individual Lm’s. Also, let the approximation of Lm using
the eigenpairs (r + 1) to n be denoted by Lr⊥m . Let Lr∗

have eigenvalues π1, . . . , πn and its eigen-decomposition be
given by Lr∗ = VΠVT . Let Zr and Vr be the matrices
formed by the first r columns of Z and V, respectively.

Theorem 1. For any unitarily invariant norm ‖ . ‖, the follow-
ing bound holds on the principal angles between the subspaces
defined by C(Zr) and C(Vr):

‖sin Θ (C(Zr), C(Vr))‖ ≤

∥∥∥∥( M∑
m=1

αmL
r⊥
m

)
Vr

∥∥∥∥(
πr − πr+1 −

M∑
m=1

αmλmr+1

) , (1)

assuming πr > πr+1 +
M∑
m=1

αmλ
m
r+1.

Proof. The matrices Z and Γ contain the eigenpairs of L. For
the given r, let Z and Γ be partitioned as

Z =
[
Zr Zr⊥

]
and Γ =

[
Γr 0
0 Γr⊥

]
. (2)
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Since Zr and Zr⊥ contain eigenvectors of L, so,

LZr = ZrΓr ⊂ C(Zr). (3)

This implies that the transformation of any vector v ∈ C(Zr)
lies in C(Zr) itself. So, Zr spans an invariant subspace of the
matrix L [1]. Similarly,

LZr⊥ = Zr⊥Γr⊥ ⊂ C(Zr⊥). (4)

So, Zr⊥ also spans an invariant subspace of L. Moreover,
the columns of Zr⊥ span the subspace orthogonal to the
one spanned by the columns of Zr. Now, let

B1 = (Zr)TLZr = Γr and B2 = (Zr⊥)TLZr⊥ = Γr⊥. (5)

According to the theory of invariant subspaces [1], B1

and B2 are called the representation of L with respect to
the bases Zr and Zr⊥, respectively. The matrix B1 = Γr

contains eigenvalues γ1, . . . , γr , while B2 = Γr⊥ contains
eigenvalues γr+1, . . . , γn. Let Ω(B) denote the set of eigen-
values of a matrix B. Under the assumption that γr 6= γr+1,
we have

Ω(B1) ∩ Ω(B2) = ∅. (6)

It follows from (6) that the eigenvalues of B1 and B2 are
non-intersecting. So, Zr spans a simple invariant subspace
of L with its complementary subspace being spanned by
Zr⊥. Also,

[
Zr Zr⊥

]
is unitary and L can be decomposed

as
L = ZrB1(Zr)T + Zr⊥B2(Zr⊥)T . (7)

The decomposition in (7) is called the spectral resolution of
L along Zr and Zr⊥. Now, let L be written as

L =
M∑
m=1

αmLm =
M∑
m=1

αm
(
Lrm + Lr⊥m

)
,

⇒ L =
M∑
m=1

αmL
r
m +

M∑
m=1

αmL
r⊥
m ,

⇒ L = Lr∗ + Lr⊥∗, where Lr⊥∗ =
M∑
m=1

αmL
r⊥
m . (8)

Let the eigenvectors and eigenvalues of Lr∗ be partitioned
as

V =
[
Vr Vr⊥] and Π =

[
Πr 0
0 Πr⊥

]
. (9)
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Since Vr contains eigenvectors of Lr∗, so

Lr∗Vr = VrΠr ⊂ C(Vr). (10)

This implies that Vr spans an invariant subspace of Lr∗ and
Πr is a Hermitian matrix of order r which gives the repre-
sentation of Lr∗ with respect to the basis Vr . According to
(8), L can be written as the sum of Lr∗ and a perturbation
Lr⊥∗. The perturbation theory [1] analyzes how near is the
perturbed subspace C(Vr) to an invariant subspace C(Zr) of
L, in terms of the perturbation matrix Lr⊥∗. So, the residual
R of the matrix L, with respect to a perturbed basis Vr and
the Hermitian matrix Πr , is given by

R = LVr −VrΠr

=

(
Lr∗ +

M∑
m=1

αmL
r⊥
m

)
Vr −VrΠr [from (8)]

= Lr∗Vr +

(
M∑
m=1

αmL
r⊥
m

)
Vr −VrΠr

= VrΠr +

(
M∑
m=1

αmL
r⊥
m

)
Vr −VrΠr

=

(
M∑
m=1

αmL
r⊥
m

)
Vr. (11)

The matrices Πr and B2 = Γr⊥ consist of the eigenvalues
of the perturbed subspace C(Vr) and the complementary
invariant subspace C(Zr⊥), respectively. According to the
Davis-Kahan theorem [2], the bound on the difference be-
tween an invariant subspace C(Zr) and its perturbation
C(Vr) holds only if the eigenvalues of the perturbed sub-
space and the complementary invariant subspace are non-
intersecting. So, the range in which the eigenvalues of Πr

and B2 lie are derived.
The matrix Π contains the eigenvalues of Lr∗ given

by Π = diag(π1, . . . , πr, πr+1, . . . , πn) which can be par-
titioned into Πr and Πr⊥ as in (9). So, the eigenvalues of Πr

satisfy
Ω(Πr) ∈ [πr, π1]. (12)

The range of the eigenvalues of B2 is derived next. Since
each Lm is a real symmetric matrix, its low-rank approxi-
mations Lrm and Lr⊥m are also real symmetric matrices. So,
each Lrm and Lr⊥m have the Hermitian property and Lr⊥∗

is the sum of M Hermitian matrices according to (8). The
eigenvalues of Lr⊥m lie in [λmr+1, λ

m
n ], and those of αmLr⊥m lie

in [αmλ
m
r+1, αmλ

m
n ]. Applying Weyl’s inequality [1] for the

eigenvalues of sum of Hermitian matrices to Lr⊥∗, we get

Ω(Lr⊥∗) ∈
[
M∑
m=1

αmλ
m
r+1,

M∑
m=1

αmλ
m
n

]
. (13)

The eigenvalues of L lie in [γn, γ1], while those of Lr∗ lie
in [πn, π1]. The range of eigenvalues of Lr⊥∗ is given by
(13). Again, L (= Lr∗ + Lr⊥∗) is the sum of two Hermitian
matrices Lr∗ and Lr⊥∗. So, using Weyl’s inequality, the
eigenvalues of L satisfy

πj +
M∑
m=1

αmλ
m
n ≤ γj ≤ πj +

M∑
m=1

αmλ
m
r+1, (14)

for j = 1, ..., n. As stated previously, B2 = Γr⊥ consists of
eigenvalues γr+1, . . . , γn of L. Thus, the maximum eigen-
value of B2 is γr+1, which using (14) is bounded by

γr+1 ≤ πr+1 +
M∑
m=1

αmλ
m
r+1. (15)

According to (12), the minimum eigenvalue of Πr is πr . Let δ
be the minimum of the separation between the eigenvalues
of Πr and B2, which is given by

δ = min{Ω(Πr)} −max{Ω(B2)}

= πr − πr+1 −
M∑
m=1

αmλ
m
r+1 > 0. (16)

So, πr − δ = πr+1 +
M∑
m=1

αmλ
m
r+1. (17)

From (15) and (17), we get γr+1 ≤ (πr − δ). Moreover, as
γn ≤ γr+1, γn ≤ (πr − δ). Also, (π1 + δ) ≥ (πr − δ), as
π1 ≥ πr . This implies that the eigenvalues of B2, that is,
γr+1, . . . , γn satisfy

Ω(B2) ∈ R \ [πr − δ, π1 + δ]. (18)

The constraints in (12) and (18) imply that the eigenvalues
of Πr are included in the interval [πr, π1], while those of B2

are excluded from the interval [πr − δ, π1 + δ], where δ > 0.
So, for an invariant subspace C(Zr), the eigenvalues of its
complementary subspace C(Zr⊥) and those of its perturbed
subspace C(Vr) are non-intersecting. Finally, according to
the Davis-Kahan theorem [2] which bounds the difference
between an invariant subspace and its perturbation, for any
unitarily invariant norm ‖ . ‖,

‖sin Θ (C(Zr), C(Vr))‖ ≤ ‖ R ‖
δ

. (19)

Substituting the value of R and δ from (11) and (16),
respectively, in (19), we get

‖sin Θ (C(Zr), C(Vr))‖ ≤

∥∥∥∥( M∑
m=1

αmL
r⊥
m

)
Vr

∥∥∥∥(
πr − πr+1 −

M∑
m=1

αmλmr+1

) (20)

This concludes the proof.

Corollary 1. Let tr(B) denote the trace of matrix B. Then,

‖sin Θ (C(Zr), C(Vr))‖2F ≤
tr

(
(Vr)T

(
M∑

m=1
αmL

r⊥
m

)2

Vr

)
(
πr−πr+1−

M∑
m=1

αmλm
r+1

) , (21)

Proof. The Frobenius norm of a matrix B, given by ‖B‖F =√
tr(BTB), is an unitarily invariant norm. The squared

Frobenius norm of R in (11) is given by

‖R‖2F = tr

(Vr)T
(

M∑
m=1

αmL
r⊥
m

)2

Vr

 . (22)

The Davis-Kahan theorem holds for any unitarily invariant
norm. So, substituting the value of δ and the Frobenius norm
of R in (19), the required bound in (21) is obtained.



KHAN AND MAJI: APPROXIMATE GRAPH LAPLACIANS FOR MULTIMODAL DATA CLUSTERING 3

The eigenvalues of Lr and Lr∗ are given by the elements
of the diagonal matrices Γ and Π, respectively. The bound on
the difference between the eigenvalues is given as follows.

Theorem 2. The eigenvalues of L and Lr∗ satisfy the following
bound:

n∑
j=1

(γj − πj)2 ≤
n∑

j=r+1

M∑
m=1

αm(λmj )2. (23)

Proof. The decomposition of L in (8) gives L = Lr∗ + Lr⊥∗.
Both Lr∗ and Lr⊥∗ are low-rank approximations of the real-
symmetric matrix L using its eigenpairs. So, Lr∗ and Lr⊥∗

are also real and symmetric. The eigenvalues of Lr∗ are
given by π1, . . . , πn, while those of Lr⊥∗ are given by

M∑
m=1

αmλ
m
r+1, . . . ,

M∑
m=1

αmλ
m
n , (24)

according to (13). L is the sum of two real-symmetric matri-
ces and has eigenvalues γ1, . . . , γn. The squared Frobenius
norm of Lr⊥∗, given by the sum of squares of its eigenval-
ues, is ∥∥∥Lr⊥∗∥∥∥2

F
=

n∑
j=r+1

M∑
m=1

αm(λmj )2. (25)

According to the Weilandt-Hoffman theorem [3], the sum
of squares of the difference between the eigenvalues of L
and Lr∗ is bounded by the squared Frobenius norm of the
residual Lr⊥∗. Therefore,

n∑
j=1

(γj − πj)2 ≤
n∑

j=r+1

M∑
m=1

αm(λmj )2. (26)

This proves the bound on the eigenvalues.

2 DESCRIPTION OF DATASETS

This subsection presents the description of five multi-omics
cancer data sets and four benchmark multi-view data sets
used for the evaluation of the proposed and the existing
algorithms.

2.1 Omics Data Sets
Five real-life multi-omics cancer data sets from The Cancer
Genome Atlas (TCGA) (https://cancergenome.nih.gov/),
are used in this study. EXperimental results of four data sets,
namely, colorectal carcinoma (CRC), lower grade glioma
(LGG), stomach adenocarcinome (STAD), and breast inva-
sive carcinoma (BRCA) are provided in the main paper.
All results of fifth data set, ovarian carcinoma (OV) and
additional results of CRC, LGG, STAD, and BRCA data sets
are provided in the supplementary material. The five TCGA
data sets used in this study are described as follows:

1) Colorectal carcinoma (CRC): It is the third most
commonly diagnosed cancer in both men and
women and account for nine percent of all cancer
deaths [4]. The colon and rectum are parts of the di-
gestive system and cancer forms in the colon and/or
the rectum. There are 307 samples in the OV data
set. Depending on the site of origin, the samples of
OV are divided into two subtypes, namely, colon

carcinoma and rectum carcinoma, having 236 and
71 samples, respectively.

2) Lower grade glioma (LGG): Diffuse low-grade and
intermediate-grade gliomas which together make
up the lower-grade gliomas have highly variable
clinical behaviour that is not adequately predicted
on the basis of histological class. Integrative anal-
ysis of data from RNA, DNA-copy-number, and
DNA-methylation platforms has uncovered three
prognostically significant subtypes of lower-grade
glioma [5]. The LGG data set consists of 267 sam-
ples. The first subtype has 134 samples which ex-
hibit IDH mutation and no 1p/19q codeletion. The
second subtype exhibits both IDH mutation and
1p/19q codeletion and has 84 samples. The third
one is called the wild-type IDH subtype and has 49
samples.

3) Stomach adenocarcinoma (STAD): Stom-
ach/Gastric cancer was the worlds third leading
cause of cancer mortality in 2012, responsible for
723,000 deaths [6]. TCGA research network has
proposed a molecular classification dividing gastric
cancer into four subtypes [7]. The STAD data set
has 199 samples which consists of 38 samples
from microsatellite unstable tumours, which show
elevated mutation rates, 20 samples of tumours
showing positivity for EpsteinBarr virus, 97 samples
of tumours having chromosomal instability, and 44
samples of genomically stable tumors.

4) Breast invasive carcinoma (BRCA): Breast cancer
is one of the most common cancers with greater
than 1,300,000 cases and 450,000 deaths each year
worldwide [8]. During the last 15 years, four in-
trinsic molecular subtypes of breast cancer (Luminal
A, Luminal B, HER2-enriched, and Basal-like) have
been identified and intensively studied [9], [10], [8].
The BRCA data set consists of 398 samples com-
prising of 171, 98, 49, and 80 samples of LuminalA,
LuminalB, HER2-enriched, and Basal-like subtype,
respectively.

5) Ovarian carcinoma (OV): Ovarian cancer is the
eighth most commonly occurring cancer in women
and there were nearly 300,000 new cases in 2018
[11]. Ovarian cancer encompasses a heterogeneous
group of malignancies that vary in etiology, molec-
ular biology, and numerous other characteristics.
TCGA researchers have identified four robust ex-
pression subtypes of high-grade serous ovarian can-
cer [12]. The OV data set consists of 334 samples.
The four subtypes are termed as immunoreactive,
differentiated, proliferative, and mesenchymal, con-
sisting of 74, 91, 90, and 79 samples, respectively.

These subtypes have been shown to be clinically relevant
and provide roadmap for patient stratification and trials of
targeted therapies.

Data pre-processing: For all the data sets, four different
omic modalities are considered, namely, DNA methyla-
tion (mDNA), gene expression (RNA), microRNA expres-
sion (miRNA), and reverse phase protein array expression
(RPPA). n order to avoid considering features with too many
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TABLE S1
Summary of Omics Data Sets

Different No. of No. of Features Sample to No. of
Data Sets Samples (n) mDNA RNA miRNA RPPA Total Feature Ratio Clusters (k)

CRC 464 2000 2000 291 178 4469 0.103826 2
LGG 267 2000 2000 333 209 4542 0.058784 3
STAD 242 2000 2000 291 218 4509 0.053670 4
BRCA 398 2000 2000 278 212 4490 0.088641 4

missing values, for all the omic modalities, those features
for which the corresponding omic expression value is not
present for more than 5% of the total number of samples
are excluded. For the remaining features, missing values are
replaced using 0.

For CRC, LGG, STAD, and BRCA data sets, sequence
based RNA and miRNA expression data from Il- lumina
HiSeq and Illumina GA platforms are used. The RNA and
miRNA modalities contain expression signals for 20, 502
annotated genes and 1046 miRNAs, respectively. However,
fil- tering out miRNAs with more than 5% missing values re-
duced the number miRNAs for the these data sets to around
300. The under- lying assumption of the proposed work
is that the data follows multivariate Gaussian distribution.
However, the sequence based RNA and miRNA expression
modalities of the data sets contain normalized RPKM (reads
per kilobase of exon per million) counts for the genes.
Count data are known to follow a skewed distribution
and have the property that the variance depends on the
mean value [13]. It is observed that genes having larger
mean expression values also tend to have larger variances
and are not normally distributed. Log transformation is
generally performed on the sequence based expression data
to make the data more or less normally distributed [13].
The degree of normality attained depends on the skewness
of the data before transformation. Therefore, for modalities
with sequence based count data, the 0 entries are replaced
by 1, and then the data is log-transformed using base 10.
On the other hand, for the OV data set, array based RNA
and miRNA expression data from AgilentG4502A 07 3 and
H-miRNA 8x15Kv2 platforms are used. As the RNA and
miRNA expression data for the OV data set is observed on
microarray based platforms which contain log-ratio based
expression data, so the data is not log-transformed as in case
of the other four data sets. The RNA modality of OV data set
consists of expression for 17,814 genes amongst which 2,000
most variable genes are considered. The miRNA expression
data is available for 799 microRNAs.

For the DNA methylation modality, methylation
β-values from Illumina HumanMethylation450 and
HumanMethylation450 beadarray platforms are used.
The HumanMethylation450 beadarray gives methylation
β-values of 485,577 CpG sites, while HumanMethylation27
beadarray covers 27,578 CpG sites. These two platforms
share a common set of 25,978 CpG locations. Over
94% of loci present on HumanMethylation27 array
are included in the HumanMethylation450 array
content. Moreover, the correlation between the β-value
measurements across the two platforms were compared
in https://cancergenome.nih.gov/abouttcga/aboutdata/
platformdesign/illuminamethylation450 and [14] which

showed strong correlation of R2 > 0.97. Therefore, for all
the data set, methylation data across those common 25,978
CpG locations are considered from both the platforms.
Additionally, CpG locations with missing gene information
were filtered out from the study. The top 2,000 most variable
CpG sites are used for clustering. For protein modality,
reverse phase protein array data from the MDA RPPA Core
platform having approximately 220 proteins is used. These
four modalities, measured on different platforms represent
a wide variety of biological information. The summary of
the data sets in terms of their sample size, dimension of
their individual modalities, and their number of clusters is
provided in Table S1.

2.2 Multimodal Benchmark Data Sets
Four multimodal bechmark data sets, namely, Football,
Plotics-uk, Rugby, and Digits from different application do-
mains are used to evaluate the performance of the proposed
and the existing algorithms. Among them, Football, Politics-
uk, and Rugby are social networking based Twitter data sets,
while Digits is an image data set. The benchmark data sets
are described as follows:

2.2.1 Twitter Data Sets
A brief description of the three benchmark Twitter data sets
used in this work are is as follows:

1) Football: This data set is a collection of 248 English
Premier League football players and clubs active
on Twitter. The disjoint ground truth communities
correspond to the 20 individual clubs in the league.

2) Politics-uk: This data set consists of 419 Members
of Parliament (MPs) in the United Kingdom. The
ground truth consists of five groups, corresponding
to political parties.

3) Rugby: The Rugby data set is a collection of 854
international Rugby Union players, clubs, and or-
ganizations currently active on Twitter. The ground
truth consists of over- lapping communities corre-
sponding to 15 countries. In the case of players,
these user accounts can potentially be assigned to
both their home nation and the nation in which
they play club rugby. As the full names or screen
names of the Twitter users are not available, so the
overlapping Rugby players are assigned either to
their country or their club.

For each dataset, a heterogeneous collection of nine
network and content-based modalities are available. In all
cases, cosine similarity is used to compute the pairwise sim-
ilarities between the Twitter users. All the Twitter data sets
are publicly available at http://mlg.ucd.ie/aggregation/.
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Fig. S1. Variation of DB index and (1−F-measure) for different values of rank r for CRC, LGG, STAD, and BRCA data sets.

Description of the nine different modalities of each Twitter
data set is given below:

1) Tweets500: User content profiles, constructed from
the concatenation of the 500 most recently-posted
tweets for each user.

2) Lists500: List content profiles, constructed from the
concatenation of both the names and the descrip-
tions of the 500 Twitter lists to which each user has
most recently been assigned.

3) Follows: From the unweighted directed follower
graph, construct binary user profile vectors based on
the users whom they follow ( i.e. out-going links).

4) Followed-by: From the unweighted directed fol-
lower graph, construct binary user profile vectors
based on the users that follow them ( i.e. incoming
links). A pair of users are deemed to be similar if
they are frequently co-followed by the same users.

5) Mentions: From the weighted directed mention
graph, construct user profile vectors based on the
users whom they mention.

6) Mentioned-by: From the weighted directed men-
tion graph, construct binary user profile vectors
based on the users that mention them. A pair of
users are deemed to be similar if they are frequently
co-mentioned by the same users.

7) Retweets: From the weighted directed retweet
graph, construct user profile vectors based on the
users whom they retweet.

8) Retweeted-by: From the weighted directed retweet
graph, construct user profile vectors based on the
users that retweet them. Users are deemed to be
similar if they are frequently co-retweeted by the
same users.

9) ListMerged500: Based on Twitter user list mem-
berships, construct an unweighted bipartite graph,
such that an edge between a list and a user indicates
that the list contains the specified user. A pair of
users are deemed to be similar if they are frequently
linked to the same lists. Again, we only consider the
500 lists to which each user has been assigned most
recently.

2.2.2 Image Data Set
The Digits data set is an image data set which consists of
features of handwritten numerals (‘0’-‘9’) extracted from
a collection of Dutch utility maps with 200 patterns per
class (for a total of 2,000 patterns) have been digitized

in binary images. The data set is publicly available at
https://archive.ics.uci.edu/ml/datasets/Multiple+Features.
The samples are represented in terms of the following six
feature sets:

1) mfeat-fou: 76 Fourier coefficients of the character
shapes.

2) mfeat-fac: 216 profile correlations.
3) mfeat-kar: 64 Karhunen-Love coefficients.
4) mfeat-pix: 240 pixel averages in 2 x 3 windows.
5) mfeat-zer: 47 Zernike moments.
6) mfeat-mor: 6 morphological features.
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Fig. S2. Variation of Silhouette and DB index with that of F-measure for
different values of rank r for OV data sets.

3 RESULTS ON OMICS DATA SETS

This section presents additional results from the four omics
data sets, CRC, LGG, STAD, and BRCA which are used to
evaluate the performance of the proposed CoALa algorithm.
Furthermore, the performance of the proposed and the ex-
isting algorithms is studied on the ovarian carcinoma (OV)
data set. This section also reports the experimental results
on the OV data set.

3.1 Rank Estimation using Davies Bouldin Index
In Section 5.2 of the main paper, the optimum value of the
rank r of the individual Laplacians is selected using the
Silhouette index. It is also demonstrated in Fig. 1 of the main
paper that with the change in rank r, the value of Silhouette
index which is an internal cluster evaluation index varies in
a similar fashion as that of F-measure, which is an external
one. However, other internal cluster validity indices which
evaluate the compactness and separability of clusters can
also be used to estimate the rank. This subsection illustrates
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TABLE S2
Effect of Row-normalization on Individual Laplacians of Omics Data

Data Set Index mDNA RNrm mDNA RNA RNrm RNA miRNA RNrm miRNA RPPA RNrm RPPA

CRC

F-measure 0.5505426 0.5849894 0.5397796 0.5397796 0.5694956 0.5673758 0.5580409 0.5741394
Purity 0.7370690 0.7370690 0.7370690 0.7370690 0.7370690 0.7370690 0.7370690 0.7370690
Rand 0.4996742 0.4989573 0.4991528 0.4991528 0.5026439 0.5022809 0.4998510 0.5007448

Jaccard 0.3813969 0.3925508 0.3789509 0.3789509 0.3820386 0.3818306 0.3810029 0.3853947
Dice 0.5521902 0.5637867 0.5496220 0.5496220 0.5528624 0.5526446 0.5517771 0.5563681

LGG

F-measure 0.8146853 0.8269248 0.5442741 0.5875701 0.4593501 0.4717221 0.4432318 0.4326018
Purity 0.8164794 0.8352060 0.5468165 0.5917603 0.5243446 0.5318352 0.5280899 0.5280899
Rand 0.7706063 0.7861508 0.5983780 0.6149925 0.5591788 0.5593760 0.5511250 0.5476050

Jaccard 0.5294865 0.5814133 0.2881813 0.3235367 0.2376175 0.2476680 0.2312886 0.2328447
Dice 0.6923716 0.7353085 0.4474235 0.4888972 0.3839918 0.3970095 0.3756854 0.3777356

STAD

F-measure 0.4576854 0.5469686 0.4336250 0.4781377 0.4116322 0.3998266 0.4260470 0.4469459
Purity 0.5537190 0.5867769 0.5371901 0.5495868 0.5000000 0.4917355 0.4917355 0.4917355
Rand 0.6261445 0.6509722 0.6155825 0.6239155 0.6008710 0.5989164 0.5918521 0.5883543

Jaccard 0.2295951 0.2869053 0.2062031 0.2234653 0.1911182 0.1994524 0.1919343 0.2076045
Dice 0.3734483 0.4458841 0.3419044 0.3652989 0.3209055 0.3325725 0.3220551 0.3438286

BRCA

F-measure 0.5910402 0.5982526 0.7467001 0.7690661 0.4751092 0.5105008 0.5073433 0.5630781
Purity 0.6482412 0.6532663 0.7412060 0.7688442 0.5552764 0.5703518 0.5804020 0.5879397
Rand 0.7174031 0.7193018 0.7848056 0.7995519 0.6479754 0.6455071 0.6748478 0.6689493

Jaccard 0.3235980 0.3318872 0.4420047 0.4857607 0.2442047 0.2672039 0.2637432 0.3132549
Dice 0.4889672 0.4983713 0.6130420 0.6538882 0.3925475 0.4217221 0.4174000 0.4770664

OV

F-measure 0.3816637 0.3857003 0.6652254 0.6444234 0.4120201 0.4186585 0.3705716 0.3858236
Purity 0.3892216 0.3922156 0.6676647 0.6497006 0.4221557 0.4131737 0.3712575 0.3712575
Rand 0.6455737 0.6469224 0.7622233 0.7536459 0.6552121 0.6387046 0.6415098 0.6357196

Jaccard 0.1681087 0.1705390 0.3576703 0.3517861 0.1864047 0.1927033 0.1650892 0.1725011
Dice 0.2878306 0.2913855 0.5268883 0.5204760 0.3142346 0.3231370 0.2833932 0.2942447

the use of Davies Bouldin (DB) index [15] index for selection
of the optimum value of rank parameter r. DB index is
a minimization based index, while, the external index F-
measure is maximization based. The value of F-measure lies
between [0, 1], while DB index is unbounded. So, the value
of F-measure is subtracted from its maximum value, 1, and
the difference is compared with that of DB index. Fig. S1
shows the variation in the value of DB index with that of
(1−F-measure) with the increase in rank r for CRC, LGG,
STAD, and BRCA data sets. The plots in Fig. S1 show that
for all these four omics data sets the variation in DB index is
very similar to that of (1−F-measure). Since the external and
internal measures are found to vary similarly, the optimum
value of DB index is likely to produce a nearly optimum
value of F-measure for the same parameter configuration.
For the OV data set, the variation in F-measure and Silhou-
ette index with increase in rank r is shown in Fig. S2a, while
that of (1−F-measure) and DB index is shown in Fig. S2b.
The plots in Fig. S2a and S2b indicate that the variation of
F-measure with change in rank r is consistent with change
in both Silhouette and DB indices for the OV data sets. The
similarly varying DB index and (1−F-measure) curves in
Fig. S1 and S2b justify that DB index can also be used for
the choice of optimal rank.

3.2 Advantage of Averting Row-Normalization on Indi-
vidual Laplacians

As stated in Section 5.4.4 of the main paper, row-
normalization in spectral clustering is advantageous for
those cases where the similarity graph can be easily par-
titioned into component subgraphs. However, in case of
real-life data sets, where the clusters in the data set
are not well-separated, the similarity graphs tend to be
densely connected and row-normalization fails to provide
any added advantage. To study this at the level of indi-

vidual graph Laplacians, the clustering performance of the
individual modalities with and without row-normalization
is reported in Table 5.4.4. In Table 5.4.4 mDNA RNrm,
RNA RNrm, miRNA RNrm, and RPPA RNrm represents
the row-normalized counterparts of mDNA, RNA, miRNA,
and RPPA modalities, respectively. The results reported in
Table 5.4.4 show that for all four component modalities
of the STAD and BRCA data sets, and for mDNA, RNA,
and miRNA modalities of LGG data set spectral cluster-
ing without row-normalization provides better performance
compared to the one with row-normalization, in terms of
all five external indices. For the CRC data set, for RNA
both the approaches have the same performance, while
for mDNA and RPPA averting row-normalization provided
better performances for majority of the external indices.
Only for the miRNA modality of the CRC data set, row-
normalization slightly outperforms the one without it. For
the OV data set also, only for the RNA modality, row-
normalization gives slightly better performance, while for
the other three modalities, namely, mDNA, miRNA, and
RPPA avoiding row-normalization gives better performance
for majority of the external indices. Summarily, spectral
clustering without the row-normalization step gives better
clustering performance in 77 cases out of the total 100
cases. Thus, even when performing spectral clustering on
the individual graph Laplacians, it is better to avoid the
row-normalization step for real-life omics data sets.

3.3 Results on OV Data Set

This subsection presents results on the TCGA ovarian carci-
noma (OV) data set which could not be provided in the main
paper due to space constraints. The OV data set contains 334
samples divided into four molecular subtypes.
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TABLE S3
Comparative Performance Analysis of Individual Modalities, Variants of Joint Subspace, and Proposed Algorithm for OV Data Set

Data Set Index mDNA RNA miRNA RPPA Lr Lr∗ Eqw Lr∗ RNrm Lr∗ Damp (CoALa)

OV

F-measure 0.3857003 0.6444234 0.4186585 0.3858236 0.6664847 0.5372622 0.7029289 0.6700660
Purity 0.3922156 0.6497006 0.4131737 0.3712575 0.6616766 0.5688623 0.7005988 0.6736527
Rand 0.6469224 0.7536459 0.6387046 0.6357196 0.7465969 0.6830124 0.7623312 0.7379295

Jaccard 0.1705390 0.3517861 0.1927033 0.1725011 0.3316576 0.2638129 0.3543549 0.3303621
Dice 0.2913855 0.5204760 0.3231370 0.2942447 0.4981124 0.4174873 0.5232822 0.4966499

TABLE S4
Comparative Performance Analysis of Proposed and Existing Approaches on OV Data Set

Data Set Measure COCA LRAcluster JIVE (PERM) A-JIVE iCluster PCA-con SNF NormS CoALa

OV

n = 334;

k = 4;

M = 4

Subspace Rank - 2 32 64 2 3 3 14 3

Ex
te

rn
al

F-measure 0.5966656 0.6384046 0.5709916 0.4872798 0.4808256 0.6868295 0.6260039 0.6910392 0.670066
Purity 0.5892215 0.6287425 0.5778443 0.4955089 0.5119760 0.6946108 0.6287425 0.6976048 0.6736527
Rand 0.7002086 0.7322472 0.6910323 0.6852043 0.6916078 0.7734621 0.7164949 0.7766269 0.7379295

Jaccard 0.3126523 0.3157798 0.2614657 0.2451469 0.2568036 0.3880307 0.2961293 0.3930125 0.3303621
Dice 0.4761614 0.4799888 0.4145427 0.3906669 0.4086615 0.5591097 0.4569441 0.5642627 0.4966499

In
te

rn
al Silhouette - 0.3749983 0.3373489 0.3474126 0.4084831 0.3730159 0.4439673 0.3705642 0.3658571

Dunn - 0.0206385 0.0147134 0.0148862 0.0130433 0.0241898 0.0116611 0.0401888 0.0198808
DB - 0.8879858 1.0133890 0.8654302 0.8079155 0.8902714 0.8397593 0.8931774 0.8662991

Xie-Beni - 137.27130 106.51260 209.29040 138.38600 122.30580 448.9055 41.933410 88.616350
Time (in sec) 41.75 33.05 3650.52 570.50 2076.36 0.86 2.48 1.72 15.58
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Fig. S3. Scatter plots using first two components of individual Laplacians, different variants of joint subspace, and the proposed CoALa algorithm
for OV data set

3.3.1 Comparison with Individual and Joint Laplacians

Table S3 compares the performance of the proposed CoALa
algorithm with that of the individual Laplacians and differ-
ent variants of the joint subspace like the full-rank, equally
weighted, and the row-normalized ones. The four individ-
ual modalities are mDNA, RNA, miRNA, and RPPA. The
full-rank subspace is denoted by Lr which is formed by the
convex combination of all the eigenpairs of each individual
Laplacian. The subspace Lr∗ Eqw denotes the approximate
subspace formed by the equally weighted combination of
r most informative (largest) eigenpairs of each Laplacian,
while Lr∗ Damp denotes the one formed by the proposed
damped weighted combination introduced in Section 3.5
of the main paper. The subspace Lr∗ Damp corresponds
to the proposed CoALa algorithm and Lr∗ RNrm denotes

the row-normalized variant of the proposed Lr∗ Damp
subspace.

The results reported in Table S3 show that the proposed
algorithm has outperformed all four individual modalities.
Thus integration of information from multiple modalities
preserves better cluster structure compared to unimodal
analysis. Among the individual modalities, RNA has the
best performance followed by miRNA. The two remaining
modalities, mDNA and RPPA have close enough perfor-
mances, while there is a significant difference between the
performances of the most relevant (RNA) and the second
most relevant one (miRNA). The scatter plots using the
two largest eigenvectors of for the shifted normalized graph
Laplacians of mDNA, RNA, miRNA, and RPPA are given
in Fig. S3a, S3b, S3c, and S3d, respectively. Other than the
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Fig. S4. Scatter plots for first two components of different low-rank based approaches for OV data set

scatter plot for RNA in Fig. S3b, objects from different
subtypes are nearly inseparable from each other in Fig. S3a,
S3c, and S3d. This is also evident from the poor performance
of mDNA, miRNA, and RPPA in Table S3 across all five
external indices. Table S3 also presents the comparative
clustering performance of different variants of the joint sub-
space. Table S3 shows that the proposed approximate sub-
space with relevance based damped weighting, Lr∗ Damp
outperforms the full-rank subspace, Lr, as well as the
equally weighted one, Lr∗ Eqw. The two-dimensional scat-
ter plots of Lr , Lr∗ Eqw, Lr∗ RNrm, and the proposed
Lr∗ Damp subspaces are provided in Fig. S3e, S3f, S3g,
and S4h, respectively. The plots in Fig. S3e-S4h show that
the objects in Lr, Lr∗ Eqw, and Lr∗ Damp subspaces lack
inter-cluster separability. However, in the row-normalized
approximate subspace Lr∗ RNrm, since row-normalization
shifts the objects from different subtypes away from the
origin into different directions, so the objects have higher
inter-cluster separability as compared to the other three
subspaces. This is also evident from the best performance
of Lr∗ RNrm in Table S3 compared to all other subspaces.

3.3.2 Comparison with Existing Approaches

For the OV data set, the performance of the proposed
algorithm is compared with that of eight existing integrative
clustering approaches, namely, cluster of cluster analysis
(COCA) [16], LRAcluster [17], joint and individual vari-
ance explained (JIVE) [18], angle-based JIVE (A-JIVE) [19],
iCluster [20], principal component analysis (PCA) on the
concatenated data (PCA-con) [21], similarity network fusion
(SNF) [22], and normality based low rank subspace (termed
as NormS) [23]. The comparative results are reported in
Table S4. The results in Table S4 show that the NormS algo-
rithm has the best performance among all the approaches,
while the proposed CoALa algorithm has the third best
performance after PCA-con, in terms of the external indices.
In terms of the internal indices, NormS has the best perfor-
mance for Dunn and Dunn Xie-Beni indices, while iCluster

and SNF have the best performance for DB and Silhouette
indices, respectively. The two-dimensional scatter plots for
the existing and the proposed approach are given in Fig.
S4. The plots for PCA-con and NormS in Fig. S4e and S4f,
respectively, are close to each other which is also evident
from their external evaluation results in Table S4.

3.4 Scatter Plot Analysis
In this subsection the scatter plots for the first two di-
mensions of the individual modalities and the existing
low-rank based approaches are compared with those of
the proposed approach for CRC, LGG, STAD, and BRCA
data sets. Most of the scatter plots for LGG and STAD
data sets are presented in the main paper in Fig. 3 and
4, respectively. This subsection analyzes additional scatter
plots for the omics data sets. Two-dimensional scatter plots
provide an interesting way for visual and intuitive analysis
of the cluster structure reflected in different subspaces. The
comparison of the proposed subspace is first made with the
individual subspaces and several variants of the joint sub-
space, followed by those of existing integrative clustering
approaches.

Two-dimensional scatter plots of the individual modal-
ities are compared with that of the proposed approach,
CoALa, in Fig. S5, S6, S7, and S8 for LGG, STAD, BRCA,
and CRC data sets, respectively. For the LGG data set,
Fig. S5 shows that only for mDNA in Fig. S5a, one of the
clusters marked in green is well-separated from the other
two, while for the other modalities, Fig. S5b, S5c, and S5d
show that all objects from all three established subtypes are
projected close to each other exhibiting poor separability.
On the contrary, Fig. S5e shows that all three subtypes
of LGG data set are compact and well separated in the
scatter plot for the first two dimensions of the proposed
subspace. For the BRCA data set, Fig. S7 shows that among
the individual modalities, the four previously established
TCGA subtypes are best reflected in RNA. For RNA, Fig.
S7b shows that two clusters marked in blue and brown are
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Fig. S5. Scatter plots for first two components of individual Laplacians and CoALa algorithm for LGG data set
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Fig. S6. Scatter plots for first two components of individual Laplacians and CoALa algorithm for STAD data set
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Fig. S7. Scatter plots using first two components of individual Laplacians, different variants of joint subspace, and the proposed CoALa algorithm
for BRCA data set

well separated in the projected two-dimensional subspace,
while the other two clusters marked in pink and green
have poor separability. On the other hand, Fig. S9h shows
that in the proposed subspace, the clusters marked in blue
and brown continue to remain well-separated and the one
marked in brown is more compact in the proposed subspace
compared to its projection in RNA in Fig. S7b. The scatter
plots for different variants of the joint subspace, like, the
full-rank (Lr), the equally-weighted (Lr∗ Eqw), and the
row-normalized (Lr∗ RNrm) one are provided in Fig. S7e,
S7f, and S7g, respectively, for BRCA data set, and in Fig.
S8e, S8f, and S8g, respectively, for CRC data set. Among
these three variants, for the BRCA data set, objects in the
Lr∗ RNrm subspace (Fig. S7g) show maximum inter-cluster
separation compared to the other two, because of the row-
normalization step. The scatter plots the existing low-rank
based approaches along with the proposed algorithm are

provided in Fig. S9 and S10 for BRCA and CRC data sets.
Most of the scatter plots for LGG and STAD data sets are
presented in the main paper in Fig. 3 and 4, respectively,
those for some of the remaining approaches are provided in
Fig. S11.

4 RESULTS ON BENCHMARK DATA SETS

This section presents additional results on the four bench-
mark multimodal data sets, namely, Football, Politics-uk,
Rugby, and Digits used in the main paper to establish
the generality of the proposed approach. The scatter plots
for the first dimensions of different low-rank subspaces of
Politics-uk and Digits data set are given in Fig. S14 and S15,
respectively.
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Fig. S8. Scatter plots for first two components of individual Laplacians, different variants of joint subspace, and the proposed CoALa algorithm for
CRC data set
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Fig. S9. Scatter plots for first two components of different low-rank based approaches for BRCA data set

4.1 Estimation of Optimal Rank

Similar to the multi-omics data sets, the rank r of the
individual Laplacians of the benchmark data sets is se-
lected using Silhouette index, as described in Section 5.2
of the main paper. For each multimodal data set having M
modalities and k clusters, the proposed algorithm selects
r eigenpairs from each of the M individual Laplacian and
constructs a joint eigenspace of rank rM . Since the proposed
algorithm used spectral clustering [24], so clustering is per-
formed on the k largest eigenvectors of the final eigenspace.
Therefore, the rank r of the individual Laplacians should be
r ≥

⌈
k/M

⌉
. The value of rank r is varied from

⌈
k/M

⌉
to

50 and for each value of rank r, the Silhouette index S(r)
is evaluated for clustering on the k largest eigenvectors of
the final eigenspace. The optimal value of rank is selected to

be the one which maximizes the value of Silhouette index
over different values of r. Fig. S12 shows the variation in
Silhouette index as well as F-measure with the increase in
rank r for different benchmark data sets. Fig. S12 shows
that the curves for Silhouette index and F-measure vary
in a similar fashion over the entire range of r values for
the benchmark data sets. Based on the Silhouette index,
the optimal ranks selected for Football, Politics-uk, Rugby,
and Digits data sets are 22, 45, 7, and 6, respectively. For
Football, Politics-uk, and Digits data sets, the value of F-
measure corresponding to the rank selected using Silhouette
index, coincides with the maximum F-measure obtained
over different values of rank r.

The rank parameter can also be tuned using the DB
index. Similar to Fig. S1, the variation of (1−F-measure)
and DB index with increase in rank r is shown in Fig. S13 for
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Fig. S10. Scatter plots for first two components of different low-rank based approaches for CRC data set
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Fig. S11. Scatter plots using first two components of some low-rank based approaches for LGG and STAD data sets.
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Fig. S12. Variation of Silhouette index and F-measure for different values of rank parameter r on benchmark data sets.

different benchmark data sets. Since, (1−F-measure) and DB
index are found to vary similarly, so, optimal rank selected
using DB index is most likely to also maximize F-measure
over different values of r.

4.2 Importance of Multimodal Integration
The three Twitter data sets, namely, Football, Politics-uk,
and Rugby have nine different modalities, while the im-
age data set, Digits has six. This subsection shows that
integration of information from multiple modalities has
huge advantage over unimodal analysis. Table S5 and S6
compares the performance of clustering on the k largest
eigenvectors of the individual shifted Laplacians with that

of the proposed approximate subspace for the Twitter and
the Digits data set, respectively. From the results of Table
S5 and S6, it is evident that the proposed CoALa algorithm
consistently and significantly outperforms all the individual
modalites across all four benchmark data sets. Amongst
the Twitter data sets, Table S5 shows that the information
about the set of users who follow a particular user or the
incoming links (followed-by modality) to the users gives
better performance compared to the other modalities for
Football and Politics-uk. On the other hand, for the Rugby
data set, the set of profiles that a user follows or out-
going links (follows) gives better performance than other
modalities on majority of external indices. Results from
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Fig. S13. Variation of DB index and (1−F-measure) for different values of rank parameter r on benchmark data sets.

TABLE S5
Comparative Performance Analysis of Individual Modalities and Proposed Approach On Twitter Data Sets

Index Followed-By Follows Mentioned-By Mentions Retweeted-By Retweets Tweets500 ListMerged500 Lists500 CoALa
F-measure

Fo
ot

ba
ll

0.7747023 0.7042013 0.7241344 0.7109046 0.5537196 0.5202768 0.2022110 0.7232265 0.6606393 0.8683491
Purity 0.7282258 0.6766129 0.7362903 0.7092741 0.5447580 0.5008064 0.2072580 0.6931451 0.6399193 0.8584677
Rand 0.9472965 0.9197825 0.9356405 0.9384256 0.8593378 0.7958926 0.7691328 0.9322776 0.9147218 0.9739682

Jaccard 0.3963918 0.2587792 0.3440107 0.3650386 0.1671624 0.1140070 0.0507533 0.3313234 0.2555575 0.6005824
Dice 0.5667814 0.4109037 0.5114635 0.5344279 0.2860945 0.2046035 0.0966025 0.4968149 0.4069673 0.7504383

F-measure

Po
lit

ic
s-

uk

0.9175316 0.8836935 0.8660595 0.7619363 0.8346957 0.7991772 0.5804394 0.8635673 0.8464556 0.9736129
Purity 0.9713604 0.9021479 0.8778042 0.7823389 0.8477326 0.8138425 0.6658711 0.9021480 0.8782816 0.9785203
Rand 0.9196880 0.8728323 0.8429422 0.7114181 0.7991423 0.7510534 0.6330178 0.8562195 0.8346941 0.9826084

Jaccard 0.8019766 0.7251893 0.6719116 0.5161645 0.6134922 0.5532727 0.2923704 0.6507932 0.6018154 0.9559279
Dice 0.8901077 0.8400708 0.8037591 0.6800488 0.7601752 0.7121101 0.4524560 0.7884612 0.7514167 0.9774674

F-measure

R
ug

by

0.7113898 0.6643790 0.6873041 0.6705410 0.7078636 0.6856623 0.3737361 0.3460789 0.7426962 0.8349647
Purity 0.8474238 0.8435597 0.8274004 0.8121780 0.7915691 0.7816159 0.4871194 0.4566745 0.7796253 0.8606557
Rand 0.8609769 0.8580120 0.8562299 0.8482375 0.8560331 0.8406967 0.7177268 0.5223523 0.8672685 0.9067597

Jaccard 0.3294506 0.3033581 0.3222504 0.3115874 0.4473977 0.4013710 0.1605544 0.1501404 0.4447761 0.5982183
Dice 0.4948458 0.4655016 0.4871073 0.4737759 0.6181705 0.5724485 0.2766858 0.2610802 0.6155136 0.7486065

TABLE S6
Comparative Performance Analysis of Individual Modalities and Proposed Approach On Digits Data Sets

fac fou kar mor pix zer CoALa
F-measure

Digits

0.6451628 0.7209662 0.7022988 0.5651531 0.6829546 0.5545294 0.8839913
Purity 0.6223000 0.7100000 0.7027000 0.5414000 0.6890000 0.5350500 0.8835000
Rand 0.8994301 0.9173923 0.9156842 0.8655854 0.9108559 0.8757654 0.9576618

Jaccard 0.3595262 0.4163257 0.4134869 0.2871402 0.3999145 0.2481882 0.6502019
Dice 0.5288984 0.5878948 0.5850591 0.2402663 0.5713413 0.3976774 0.7880271

three Twitter data sets imply that ‘follows’ and ‘followed-
by’ are important relationships for identification of com-
munities in social networks. Moreover, paired modalities
like ‘follows’ and ‘followed-by’, ‘mentions’ and ‘mentioned-
by’, ‘retweets’ and ‘retweeted-by’ have close performances
across all the Twitter data sets. For the Digits data set,
Table S6 shows that all six component modalities have
significantly lower than that of the proposed approach. The
‘fou’ modality consisting of 76 Fourier coefficients of the
character shapes of the images has the best performance
amongst the component modalities. The 64 Karhunen-Love
coefficients computed in ‘kar’ modality has performance
close to those based on Fourier coefficients. Summarily, for
all the benchmark data sets, integration of multiple modal-
ities always beats the performance of individual Laplacians
by a wide margin.

4.3 Choice of Weight Parameter α
The weight parameter α determines the influence of the
individual modalities during data integration. Section 3.5
of the main article introduces a relevance based damping
strategy for choice of α. This damped weighing referred

to as Lr∗ Damp is compared with Lr∗ Eqw, where all the
component modalities are equally weighted. The compar-
ative results for the benchmark data sets are reported in
Table S7. It can be observed in Section 3.5 of the main article
that for a majority of omics data sets, damped weighting
of modalities based on relevance outperforms the equally
weighted one. On the contrary, the results in Table S7 shows
that the equally weighted strategy gives better performance
that the damped one on the Twitter based Football and
Politics-uk data sets. One possible explanation is that most
of the component modalities of the Twitter data sets are
similar to each other and have close performances. For in-
stance, ‘follows’ and ‘followed-by’, both are network based
modalities where ‘follows’ captures the outgoing links from
the nodes, while ‘followed-by’ captures the incoming links
to the nodes. Other pairs of modalities like ‘mentions’
and ‘mentioned-by’, and ‘retweets’ and ‘retweeted-by’ are
also very similar to each other. In the damped weighting
introduced in Section 3.5, slight differences in the relevance
values of these similar modalities would dampen the effect
of the one with lower relevance by a factor of β. This
leads to degraded cluster structure in eigenspace of the joint
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TABLE S7
Comparative Performance Analysis of Equally and Damped Weighted Combination on Benchmark Data Sets

Index Lr∗ Eqw Lr∗ Damp Lr∗ Eqw Lr∗ Damp Lr∗ Eqw Lr∗ Damp Lr∗ Eqw Lr∗ Damp
F-measure

Fo
ot

ba
ll

0.8848290 0.8683491

Po
lit

ic
s-

uk

0.9735519 0.9736129

R
ug

by

0.8288040 0.8349647

D
ig

it
s

0.8746977 0.8839913
Purity 0.8778225 0.8584677 0.9785203 0.9785203 0.8621780 0.8606557 0.8310000 0.8835000
Rand 0.9760741 0.9739682 0.9828368 0.9826084 0.8972515 0.9067597 0.9564677 0.9576618

Jaccard 0.6328100 0.6005824 0.9564689 0.9559279 0.5487269 0.5982183 0.6571682 0.6502019
Dice 0.7747074 0.7504383 0.9777501 0.9774674 0.7086141 0.7486065 0.7931219 0.7880271
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Fig. S14. Scatter plots using first two components of low-rank based subspaces for Politicsuk data set

TABLE S8
Effect of Row-Normalization on Benchmark Data Sets

Index Lr∗ RNrm CoALa Lr∗ RNrm CoALa Lr∗ RNrm CoALa Lr∗ RNrm CoALa
F-measure

Fo
ot

ba
ll

0.8679092 0.8683491

Po
lit

ic
s-

uk

0.9571452 0.9736129

R
ug

by

0.6737320 0.8349647

D
ig

it
s

0.8629902 0.8839913
Purity 0.8911290 0.8584677 0.9715990 0.9785203 0.8545667 0.8606557 0.8565000 0.8835000
Rand 0.9785490 0.9739682 0.9746971 0.9826084 0.8606810 0.9067597 0.9629410 0.9576618

Jaccard 0.6403940 0.6005824 0.9356337 0.9559279 0.2977746 0.5982183 0.6872517 0.6502019
Dice 0.7807807 0.7504383 0.9667067 0.9774674 0.4588952 0.7486065 0.8146404 0.7880271

Laplacian for two Twitter data sets when using the damped
weighted strategy. For Rugby and Digits data sets, damped
weighted strategy Lr∗ Damp has better performance com-
pared to equally weight Lr∗ Eqw one for majority of the
external indices.

4.4 Effect of Row-Normalization on Benchmark Data
Sets

Table S8 compares the performance of the proposed approx-
imate subspace with and without the row-normalization
step. In Table S8, the subspace Lr∗ RNrm corresponds to the
row-normalized one. Table S8 shows that for Politics-uk and
Rugby data sets, avoiding row-normalization gives better
performance for all the external indices. On the other hand,
for Football and Digits data set, majority of the external
indices gives better performance with row-nomarlization.
Scatter plots for the first dimensions of Lr∗ RNrm and the

proposed CoALa algorithm are given in Fig. S14 and S15 for
the Politics-uk and the Digits data set, respectively.

5 EXPERIMENTAL SETUP FOR EXISTING ALGO-
RITHMS

The performance of the proposed CoALa algorithm is com-
pared with six existing integrative clustering based ap-
proaches, namely, cluster of cluster analysis (COCA) [16],
LRAcluster [25], joint and individual variance explained
(JIVE) [26], iCluster [27], principal component analysis
(PCA) on concatenated data (PCA-con) [28], and similarity
network fusion (SNF) [22]. The experimental setup used for
these algorithms is briefly outlined as follows:

1) COCA [16]: This is a consensus clustering based
approach which first cluster each modality sepa-
rately and the individual clustering solutions are
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Fig. S15. Scatter plots using first two components of low-rank based subspaces for Digits data set

then combined to get the final cluster assignments.
For the COCA approach, k-means clustering is
first performed on each modality separately with
k clusters. Clusters identified from each modality
are encoded into a series of indicator variables
for each cluster. Consensus clustering [29] is then
performed on the indicator matrix of 0’s and 1’s
using ConsensusClusterPlus R package [30] version
1.40.0. Parameters used for consensus clustering are
80% sample resampling with 1000 iterations of hi-
erarchical clustering based on a Pearson correlation
distance metric, as suggested in [16]. The COCA
algorithm uses re-sampling based technique to find
the clusters, so its performance varies on different
executions of the algorithm. The average perfor-
mance of the COCA algorithm over 10 executions
is reported in this work.

2) LRAcluster [25]: The low-rank based approach
which models each modality of a multimodal data
set using a separate probability distribution having
its own set of parameters. In this work, four omic
modalities are considered for each cancer data set.
For Gene and miRNA modalities, sequence based
count data are considered, while for DNA and
Protein modalities, array based expression data is
considered. Therefore, as suggested by the authors
of this algorithm, the count based Gene and miRNA
modalities are modelled using Poisson distribution,
while array based DNA and Protein modalities are
modelled using Gaussian distribution [25]. The rank
of the lower dimensional subspace is optimized
using the likelihood based “explained variation”
criteria [25], as suggested by the authors. According
to this criteria, the value of explained variance is

observed for different values of rank varying be-
tween 0 to 10. The optimal value of rank is chosen
to be the one having the maximum change in ex-
plained variance. The change in explained variance
for different values of rank is given in Fig. S16 for
different data sets. Based on this criteria, the optimal
rank obtained for the CRC, LGG, STAD, BRCA, and
OV data sets are 3, 2, 1, 2, and 2, respectively. After
obtaining the optimal low-rank subspace, k-means
clustering is performed in that subspace to identify
the clusters.

3) JIVE (PERM) [26] and A-JIVE [19]: The JIVE
(PERM) and A-JIVE algorithms extracts two low-
rank representations for each modality, one encodes
the shared joint structure, while the other encodes
modality specific structure. The ranks of the joint
and the individual structures are automatically de-
termined using a permutation (PERM) test based
approach for the JIVE algorithm. After obtaining the
joint rank, say j, and the joint and individual struc-
tures for each modality, the overall joint structure of
all the modalities is obtained by concatenating the
j largest principal components of the joint structure
from each of the modalities. Then k-means is per-
formed on the concatenated joint structure. The joint
rank selected by the A-JIVE algorithm for the CRC,
LGG, STAD, OV, and BRCA data sets are 32, 48,
64, and 64, respectively, while the individial ranks
for all these data sets are selected to be zero. The
joint and individual ranks obtained by the JIVE al-
gorithm using the permutation based rank selection
criterion are given in Table S9 for different omics
data sets.

4) iCluster [27]: This is a low-rank based approach
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Fig. S16. Optimal rank estimation of LRAcluster for different omics data sets

TABLE S9
Joint and Individual Ranks Estimated by JIVE (PERM) Algorithms

Different Joint Individual Ranks
Datasets Rank mDNA RNA miRNA RPPA

CRC 16 21 31 23 10
LGG 8 12 23 18 12
STAD 8 15 21 15 8
BRCA 12 30 36 15 15

OV 32 34 50 33 23

which uses Gaussian latent variable model to ex-
tract a (k − 1) dimensional joint subspace of a
multimodal data set, where k is the number of
clusters in the data set. The k-means clustering is
performed in the (k − 1) dimensional joint sub-
space extracted by the iCluster algorithm Hence,
the dimensions of low-rank subspaces extracted
by iCluster for CRC, LGG, STAD, BRCA, and OV
data sets are 1, 2, 3, 3, and 3, respectively. The
iCluster R-package available at https://CRAN.R-
project.org/package=iCluster is used to evaluate the
performance of the iCluster algorithm. For each
modality, iCluster has a lasso penalty parameter (λ),
which varies between 0 and 1. The value 0 repre-
sents the non-sparse solution where all features are
selected, while 1 represents the null model where
no features are included. The optimal value of λ
is selected using the proportion of deviance (POD)
statistic [20]. The POD statistic lies between 0 and 1.
Small values of POD indicate strong cluster separa-
bility, and large values of POD indicate poor cluster
separability. The value of λ that minimizes the POD
statistic is selected to be the optimal one. The uni-
form sampling design (UD) approach of Fang and
Wang [31] is used to generate different combination
of λ values that are scattered uniformly across the
search domain as suggested in [32]. The penalty
parameter λ selected for the individual modalities
of the multi-omics data sets are provided in Table
S10.

5) PCA-con [28]: In the PCA-con approach, genomic
features from all the available modalities are con-
catenated and then PCA is performed on the con-
catenated data to extract the principal subspace. For
a comparative study, the number of principal com-
ponents considered for PCA-con approach is same
as the dimension of the joint subspace extracted
by the proposed approach, that is, the number of

TABLE S10
Penalty Parameter λ Selected by iCluster Algorithm

Different Rank of Penalty λ
Datasets Subspace mDNA RNA miRNA RPPA

CRC 1 0.5488599 0.1188925 0.0602605 0.5977198
LGG 2 0.5228013 0.0244299 0.0928338 0.9657980
STAD 3 0.9201954 0.7149837 0.0960912 0.1026058
BRCA 3 0.3338762 0.0895765 0.8289902 0.8843648

OV 3 0.9332247 0.2622149 0.0798045 0.4185667

clusters k. For all the low-rank based approaches,
namely, LRAcluster, JIVE, A-JIVE, iCluster, PCA-
con, NormS, and the proposed approach, k-means
clustering is performed 30 times and the cluster
solution corresponding to the minimum objective
function is used for comparative analysis.

6) SNF [22]: This is graph-theoretic approach which
constructs a fused network from similarity net-
works corresponding to individual modalities.
On every iteration of the SNF algorithm the
weights of the fused network are updated so
as to make the fused network more similar to
each of the individual modalities. Finally, nor-
malized spectral clustering [33] is performed on
the final fused network to obtain the clusters.
The SNFtool package available at https://cran.r-
project.org/web/packages/SNFtool/index.html is
used for study the performance of the SNF algo-
rithm. The algorithm is evaluated at the default
parameter setting.

REFERENCES

[1] G. W. Stewart and J.-g. Sun, Matrix perturbation theory. Academic
press New York, 1990.

[2] C. Davis and W. Kahan, “The rotation of eigenvectors by a pertur-
bation. III,” SIAM Journal on Numerical Analysis, vol. 7, no. 1, pp.
1–46, 1970.

[3] G. H. Golub and C. F. Van Loan, Matrix Computations (3rd Ed.).
Baltimore, MD, USA: Johns Hopkins University Press, 1996.

[4] J. Ferlay, I. Soerjomataram, M. Ervik, R. Dikshit, S. Eser,
C. Mathers, M. Rebelo, D. M. Parkin, D. Forman, and F. Bray.
(2013) GLOBOCAN 2012 v1.0, cancer incidence and mortality
worldwide: IARC cancerbase no. 11. Accessed on January 15,
2014. [Online]. Available: http://globocan.iarc.fr

[5] TCGA Research Network, “Comprehensive, integrative genomic
analysis of diffuse lower-grade gliomas,” The New England Journal
of Medicine, vol. 372, no. 26, pp. 2481–2498, 2015.

[6] J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Re-
belo, D. M. Parkin, D. Forman, and F. Bray, “Cancer incidence
and mortality worldwide: sources, methods and major patterns in
GLOBOCAN 2012,” Int. J. Cancer, vol. 136, no. 5, pp. E359–386,
Mar 2015.



16 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. YY, 2019

[7] TCGA Research Network, “Comprehensive molecular characteri-
zation of gastric adenocarcinoma,” Nature, vol. 513, no. 7517, pp.
202–209, 2014.

[8] TCGA Network, “Comprehensive molecular portraits of human
breast tumours,” Nature, vol. 490, no. 7418, pp. 61–70, Oct 2012.

[9] Z. Hu et al., “The molecular portraits of breast tumors are con-
served across microarray platforms,” BMC Genomics, vol. 7, p. 96,
Apr 2006.

[10] T. Sorlie et al., “Gene expression patterns of breast carcinomas
distinguish tumor subclasses with clinical implications,” Proc.
Natl. Acad. Sci. U.S.A., vol. 98, no. 19, pp. 10 869–10 874, Sep 2001.

[11] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and
A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of
incidence and mortality worldwide for 36 cancers in 185 coun-
tries,” CA Cancer J Clin, Sep 2018.

[12] TCGA Research Network, “Integrated genomic analyses of ovar-
ian carcinoma,” Nature, vol. 474, no. 7353, pp. 609–615, Jun 2011.

[13] I. Zwiener, B. Frisch, and H. Binder, “Transforming rna-seq data
to improve the performance of prognostic gene signatures,” PloS
one, vol. 9, no. 1, p. e85150, 2014.

[14] M. Bibikova, B. Barnes, C. Tsan, V. Ho, B. Klotzle, J. M. Le,
D. Delano, L. Zhang, G. P. Schroth, K. L. Gunderson, J.-B. Fan,
and R. Shen, “High density dna methylation array with single cpg
site resolution,” Genomics, vol. 98, no. 4, pp. 288 – 295, 2011, new
Genomic Technologies and Applications.

[15] D. L. Davies and D. W. Bouldin, “A cluster separation measure,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
PAMI-1, no. 2, pp. 224–227, April 1979.

[16] K. A. Hoadley, C. Yau et al., “Multiplatform analysis of 12 cancer
types reveals molecular classification within and across tissues of
origin,” Cell, vol. 158, pp. 929–944, 2014.

[17] D. Wu, D. Wang, M. Q. Zhang, and J. Gu, “Fast dimension reduc-
tion and integrative clustering of multi-omics data using low-rank
approximation: application to cancer molecular classification,”
BMC genomics, vol. 16, no. 1, p. 1022, 2015.

[18] E. F. Lock, K. A. Hoadley, J. S. Marron, and A. B. Nobel, “Joint
and individual variation explained (jive) for integrated analysis of
multiple data types,” The annals of applied statistics, vol. 7, no. 1,
pp. 523–542, 2013.

[19] Q. Feng, M. Jiang, J. Hannig, and J. Marron, “Angle-based joint
and individual variation explained,” Journal of Multivariate Analy-
sis, vol. 166, pp. 241 – 265, 2018.

[20] R. Shen, A. B. Olshen, and M. Ladanyi, “Integrative clustering of
multiple genomic data types using a joint latent variable model
with application to breast and lung cancer subtype analysis,”
Bioinformatics, vol. 25, no. 22, pp. 2906–2912, 2009.

[21] I. Jolliffe, Principal Component Analysis, ser. Springer Series in
Statistics. Springer, 2002.

[22] B. Wang et al., “Similarity network fusion for aggregating data
types on a genomic scale,” Nature methods, vol. 11, no. 3, pp. 333–
337, 2014.

[23] A. Khan and P. Maji, “Low-rank joint subspace construction for
cancer subtype discovery.” IEEE/ACM transactions on computational
biology and bioinformatics, 2019, doi: 10.1109/TCBB.2019.2894635.

[24] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
computing, vol. 17, no. 4, pp. 395–416, 2007.

[25] D. Wu, D. Wang, M. Q. Zhang, and J. Gu, “Fast dimension reduc-
tion and integrative clustering of multi-omics data using low-rank
approximation: application to cancer molecular classification,”
BMC genomics, vol. 16, no. 1, p. 1022, 2015.

[26] E. F. Lock, K. A. Hoadley, J. S. Marron, and A. B. Nobel, “Joint
and individual variation explained (jive) for integrated analysis of
multiple data types,” The annals of applied statistics, vol. 7, no. 1,
pp. 523–542, 2013.

[27] R. Shen, A. B. Olshen, and M. Ladanyi, “Integrative clustering of
multiple genomic data types using a joint latent variable model
with application to breast and lung cancer subtype analysis,”
Bioinformatics, vol. 25, no. 22, pp. 2906–2912, 2009.

[28] I. Jolliffe, Principal Component Analysis, ser. Springer Series in
Statistics. Springer, 2002.

[29] S. Monti, P. Tamayo, J. Mesirov, and T. Golub, “Consensus clus-
tering: a resampling-based method for class discovery and visu-
alization of gene expression microarray data,” Machine Learning,
vol. 52, pp. 91–118, 2003.

[30] Wilkerson, M. D., Hayes, and D. Neil, “Consensusclusterplus: a
class discovery tool with confidence assessments and item track-
ing,” Bioinformatics, vol. 26, no. 12, pp. 1572–1573, 2010.

[31] K. T. Fang and Y. Wang, Number-Theoretic Methods in Statistics.
Chapman and Hall/CRC, 1993.

[32] R. Shen, Q. Mo, N. Schultz, V. E. Seshan, A. B. Olshen, J. Huse,
M. Ladanyi, and C. Sander, “Integrative subtype discovery in
glioblastoma using icluster,” PloS one, vol. 7, no. 4, p. e35236, 2012.

[33] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering:
Analysis and an algorithm,” in Advances in neural information
processing systems, 2002, pp. 849–856.


